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ABSTRACT 

Techniques for measuring and estimating the end-to-end latency 
and component latencies of a virtual acoustic environment are 
discussed. These key parameters impact the responsiveness and, 
hence, “realism” of a virtual environment. 

1. INTRODUCTION 

Latency provides an important indicator of the dynamic 
performance of a virtual acoustic environment (VAE) and it is 
critical that it be carefully defined and measured. In a VAE, the 
end-to-end latency refers to the time elapsed from the 
transduction of an event or action, such as movement of the 
head, until the consequences of that action cause the equivalent 
change in the virtual environment. Latencies are contributed by 
individual components of the system, including tracking 
devices, signal processing algorithms, device drivers, and 
communication lines. Due to variability in the way these 
components interact, a system's end-to-end latency will vary 
over time. Thus, measurements of the mean, standard deviation, 
and range are needed to characterize this parameter. 

Psychoacoustic data can provide guidelines regarding 
whether a given system’s end-to-end latency meets perceptual 
requirements [1]. For example, examination of the head motions 
that listeners use to aid localization suggests that the angular 
velocity of some head motions (in particular, left-right yaw) 
may be as fast as 175°/s for short time periods (about 1s). From 
psychophysical studies of the minimum audible movement 
angle for real sound sources (listener position fixed), one can 
infer that the minimum perceptible end-to-end latency for a 
virtual audio system should be no more than about 70ms for a 
source velocity of 180°/s. If one assumes that these thresholds 
are similar for all kinds of relative source-listener motion (e.g., 
when the source is fixed and the listener is moving), then 
latencies greater than 70ms may exceed the perceptible 
threshold during active localization. Such latencies could 
potentially result in short-term under-sampling (compression) of 
relative listener-source motion as well as positional instability 
of the simulated source. 

2. LATENCY MEASUREMENT TOOLS 

In this study, the latency of the VAE rendering system SLAB 
[2] is analyzed. Since SLAB is developed under Windows 2000 
(aka Win2k), some of the following latency measurement 
techniques use Microsoft Windows APIs (application 
programming interfaces). The features used, however, are fairly 

standard and should be available on other platforms. Source 
code demonstrating these techniques is available to the public 
as part of the SLAB User Release [2]. 

When measuring latency, one needs an accurate way to 
measure the interval of time between two events. These events 
can be inside or outside of a computer. VAE end-to-end latency 
is an example of an interval between two external events where 
the first event is the user crossing a threshold and the second 
event is the user hearing the rendered result of the threshold 
crossing. API latency is an example of an interval between an 
internal event and an external event where the first event is the 
time at which an API call is made and the second event is the 
user hearing the rendered result of the API call. 

2.1. External Events 

To measure the interval between events outside of a computer, 
an interval counter or digital storage oscilloscope can be used to 
measure the time difference between rising edges of two 
electrical signals. In some cases, a transducer is required to 
convert the event of interest into an electrical signal (e.g., an 
optical switch to capture the time at which an object crosses a 
physical threshold). 

2.2. Internal Events 

When measuring event intervals inside of a computer, time 
functions can be used to time stamp events. The difference 
between event time stamps then provides the interval value. 
Often, multiple time functions exist, so one must be careful to 
select the timer with the greatest accuracy and resolution. 

In the Win32 SDK (software development kit), the 
QueryPerformanceCounter() function provides an 
extremely accurate timer with resolution of a microsecond or 
better (depends on OS and CPU). 

2.3. Mixed External and Internal Events 

To measure the interval between an event inside and an event 
outside of a computer, the internal event needs to be 
externalized. An internal event can be externalized by writing to 
the serial port or the parallel port when the internal event 
occurs. Of course, the latency of the port write must be 
determined and stable. 
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2.3.1. Serial Port Externalization 

For this study, the serial port was the preferred technique for 
externalizing an internal event because it is supported under 
both Win98/ME and Win2k. The drawback compared to the 
parallel port is increased difficulty in use and increased latency. 
Once the serial port is configured with CreateFile(), a 
rising edge can be created on pin 3 of a 9 pin serial port with 
the call: 

 
char chr = 0x00;
WriteFile( hCom, &chr, 1, &numWrite, NULL );
 
Serial port loopback tests under Win98, WinME, and 

Win2k on systems ranging from 450MHz to 1.5GHz yielded 
approximately a 0.5ms write/read time. Thus, the internal event 
is externalized in less than 0.5ms. 

2.3.2. Parallel Port Externalization 

Although the parallel port is extremely easy to use and has very 
low latency under Win98/ME, it is difficult to use under Win2k. 
Under Win98/ME, a rising edge can be created on pin2 of the 
parallel port with the two calls: 

 
_outp( 0x378, 0 );
_outp( 0x378, 1 );

 
Under Win2k, the _outp() instruction is a privileged kernel 
mode instruction. Since the user’s code executes outside of the 
kernel, the _outp() instruction will cause an exception error 
when executed under Win2k. 

For those using Win98/ME or another operating system 
where the _outp() call is allowed (e.g., Linux with root 
privilege), the parallel port may very well be the preferred 
option. Parallel port loopback tests under WinME on a 450MHz 
machine yielded a 13µs write/read time. Thus, the internal event 
is externalized in less than 13µs. 

3. SLAB LATENCY COMPONENTS 

To measure SLAB’s latency, two approaches were taken, a low-
level individual latency component analysis, and a high-level 
user parameter analysis. In the low-level approach, each 
contributing component was isolated and analyzed. In the high-
level approach, end-to-end latency data was collected for 
several permutations of SLAB user parameters. In this section, 
the low-level perspective will be discussed. The high-level 
perspective will be discussed in the following section. 

3.1. Latency Measurement 

A swing-arm apparatus [3] was used to measure tracker latency 
and end-to-end latency. An electromagnetic Polhemus Fastrak 
tracker sensor is attached to a mechanical swing-arm. When the 
swing-arm is pushed, it passes through an optical switch (Figure 
1, Ch1), triggering a single-shot oscilloscope capture of tracker 
serial output (Figure 1, Ch2), tracker library output (Figure 1, 
Ch3), and SLAB headphone output (Figure 1, Ch4). 

The SLABLatency utility monitors the location of the 
sensor using an in-house tracker driver. SLABLatency is 
configured ahead of time to know the location of the optical 
switch. Thus, at the same moment the optical switch is 
activated, SLABLatency changes the SLAB scenario, causing a 
change in the headphone display. The interval from optical 

switch pulse to headphone display change is SLAB’s end-to-
end latency (Figure 1, “C1->C4 Dly”). 

 
Figure 1.  Latency measurement oscilloscope 
screenshot. Ch1: optical switch, Ch2: tracker serial 
communications, Ch3: tracker library serial port write, 
Ch4: SLAB headphone display.  Output buffer size = 
4096 bytes, write buffer size = 256 bytes. 

3.2. Tracker Latency 

Two components contribute to Fastrak tracker latency, tracker 
update rate and EM (electromagnetic) field sampling. 

3.2.1. Tracker Update Rate Latency 

The tracker was configured to operate at its highest update rate, 
120Hz (update period = 8.3ms). Communication with the 
tracker occurred over an RS232 serial connection. In streaming 
mode, the tracker generates steady bursts of serial data at 8.3ms 
intervals (Figure 1, Ch2). Since the optical switch can be 
crossed at any time within this interval, a variable latency exists 
of 0.0-8.3ms with a uniform probability of any given latency 
value occurring at any given time. 

3.2.2. Tracker Electromagnetic Field Sampling Latency 

Attaching an electromagnetic pickup to the Fastrak source 
revealed that the tracker locates the sensor by sampling three 
EM bursts from the source. The three bursts last 1.5ms each. 
Since the sensor’s location can vary slightly between the three 
bursts, the midpoint of the middle burst is defined as the EM 
field sampling time. The EM sampling latency is the interval 
from this point to the beginning of serial output. This interval 
was measured to be 3.5ms. 

3.3. Serial Communication Latency 

The tracker is configured to communicate with a computer over 
a 115,200 bps (bits per second) RS232 serial line. The sensor 
location data packet consists of 17 data bytes (8 bits per byte). 
Each serial data byte contains an additional start bit and stop 
bit. Thus, the total number of bits transmitted per data packet is 
170 bits. At 115,200 bps, the serial communication latency is: 
170 bits / 115,200 bps = 1.5ms. This is consistent with the 
measured width of the serial bursts in Figure 1, Ch2. 
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3.4. Tracker Driver Latency 

The tracker driver latency was measured using serial port 
externalization. Inside the SLAB API update loop, the tracker 
driver blocks, waiting for a tracker data packet. When new data 
is available, the driver unblocks and calls a SLAB API function 
with the new location data. A serial port write was inserted 
between the blocked tracker driver function and the SLAB API 
function. The tracker driver latency is the difference between 
the last serial bit read (Figure 1, Ch2) and the serial port write 
(Figure 1, Ch3). Although it is difficult to see in Figure 1, using 
the appropriate time base, the tracker driver latency was 
measured to be 0.4-0.5ms. 

3.5. API Latency 

The API latency is the interval between an API scenario update 
and the display of the rendered result of that update (Figure 1, 
“C3->C4 Dly”). In SLAB, this is largely a function of the 
processing frame size, the sound output buffer management 
algorithm, and the sound peripheral driver latency. A fourth 
contributing factor can be the processing parameter smoothing 
technique, but for the purposes of this analysis, parameter 
smoothing is not considered (parameter smoothing is disabled 
using the SLAB API call SmoothTime(0.0)). 

3.6. Frame Size Latency 

Frame size (aka block size) refers to the number of sound 
samples processed at a time. When a new frame of input is 
available, scenario parameters (e.g., listener position) are 
converted to processing parameters (e.g., filter taps). Excluding 
parameter smoothing, processing parameters do not change 
during the processing of the frame. Thus, the entire frame is 
processed using one set of scenario parameters. If a scenario 
update occurs just prior to computing the frame, little latency is 
introduced. However, if the scenario update occurs just after a 
frame is processed, a frame size amount of latency is 
introduced. As frame size increases, scenario update rate 
decreases and API latency and API latency jitter increase. 
Unfortunately, small frame sizes are costly to compute, so a 
trade-off exists between CPU usage and latency. 

In SLAB, the frame size is 32 samples (sampling rate = 
44,100 samples/s). To preserve CPU resources, the head-related 
impulse responses (HRIRs) are updated every other frame, 
yielding a maximum frame latency of 1.5ms. Since the timing of 
the scenario update is unconstrained, the frame size latency is 
stochastic and uniformly distributed between 0.0-1.5ms. As will 
be seen in the next section, this latency is absorbed within the 
sound output buffer management algorithm. 

3.7. Output Buffer Latency 

The Microsoft DirectSound API provides a low-latency 
interface to a sound output peripheral. After a frame of samples 
is processed, it is transferred to a DirectSound output buffer. 
Selecting the size of the output buffer depends on system load. 
If the CPU is heavily taxed, the Windows scheduler may starve 
SLAB, resulting in a buffer underflow and, possibly, an audible 
artifact. Large buffer sizes help protect against this situation 
because samples continue to play while SLAB awaits attention 
from the scheduler. An output buffer size (OBS) between 4096 
bytes (23.2ms) and 8192 bytes (46.4ms) is usually sufficient to 
protect against underflow. 

An additional buffer, the write buffer, exists to optimize 
CPU use. Since DirectSound management can be 
computationally expensive, the write buffer collects multiple 
frames of data before copying samples to DirectSound. The 
write buffer size (WBS) is typically 256 bytes (2 frames, 1.5ms) 
or 512 bytes (4 frames, 2.9ms). 

To analyze the expected latency impact of the output buffer 
management algorithm two assumptions will be made: 
 
(1) Since the output buffer exists to absorb unexpected CPU 
usage spikes, most of the time it should be full or near full. It 
will be assumed it is always as full as the buffer management 
algorithm will allow. 
 
(2) In theory, a scenario update can occur between any two 
frames. It will be assumed that rendering the SLAB scenario 
consumes negligible CPU resources (e.g., one sound source in 
an anechoic simulation). Thus, the frame processing thread will 
process all the frames it can until it is forced to stop due to a full 
output buffer. The result of this assumption is that all frames in 
the write buffer are processed with the same scenario 
parameters. 
  

Given assumption 1, after the write buffer is copied to the 
output buffer, the output buffer is full. Thus, processing 
suspends awaiting space in the output buffer. Given assumption 
2, the write buffer basically becomes the frame, with the write 
buffer size replacing the frame size. Hence, a latency of 0.0-
WBS (ms) is introduced after an API scenario update. Once a 
write buffer amount of samples have played out of the output 
buffer, all frames that fit within a write buffer are processed and 
copied to the output buffer and the suspend-and-fill cycle 
repeats. This behavior results in a constant latency of (OBS - 
WBS) existing in addition to the write buffer latency. Since the 
timing of the scenario update is unconstrained, the resultant 
output buffer latency is stochastic and uniformly distributed 
between (OBS - WBS) and OBS. The mean of this range will 
be termed the Estimated Buffer Latency (EBL). As will be seen 
in the next section, EBL can serve as a rough approximation of 
API latency. The jitter introduced by the output buffer 
management algorithm is equal to the write buffer size. 

3.8. Sound Peripheral Driver Latency 

DirectSound can use one of two driver models, VxD 
(Win98/ME) or WDM (Win98/ME/2k). The WDM driver may 
include a component called the KMixer that can add up to 30ms 
of latency. Subtracting the Estimated Buffer Latency from 
measured API latency yielded 2.1ms for a driver not using the 
KMixer (Creative Audigy, Win2k) and 26.3ms for a driver 
using the KMixer (M Audio Delta66, Win2k). 

3.9. Client/Server Communication Latency 

Thus far, it has been assumed the API latency is confined to the 
host computer (i.e., the API call occurs on the same computer 
rendering the virtual environment). In client/server mode, the 
API call occurs on a client computer while rendering takes 
place on a separate server computer. In SLAB, a TCP/IP 
sockets interface is used to communicate between the client and 
the server over a dedicated 100MBit Ethernet connection. 

The client/server communication latency was measured by 
time stamping the socket packet sends and receives. The client 
and server timers were synchronized using serial port 
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externalization. The measured latency values clustered about 
four points, 0.1ms (33%), 0.5ms (17%), 1.2ms (33%), and 
1.5ms (16%), with outliers as high as 3ms. 

The client and server software can be executed on the same 
computer in a “pseudo” client/server mode. In this mode, the 
measured latency was 0.2ms. 

3.10. Estimated End-to-End Latency 

Summing the component latencies from the preceding sections 
(values in bold type) yields the following estimates for host-
mode end-to-end latency (in ms, excluding the KMixer): 

 
tmin  = 0.0 + 3.5 + 1.5 + 0.4 + OBS - WBS + 2.1 
tmax = tracker update period + 3.5 + 1.5 + 0.5 + OBS + 2.1 
tavg  = (tmin + tmax) / 2 
 = 7.6 + tracker update period/2 + OBS - WBS/2 
 

The latency values should be distributed in a trapezoidal or 
triangular distribution due to the cascade of the uniformly 
distributed tracker update rate and output buffer latencies. This 
distribution provides an estimate of the latency jitter in the 
system. For client/server mode, the following offsets should be 
added to the estimates above: 0.1ms to tmin, 1.5ms to tmax, and 
0.8ms to tavg. 

4. END-TO-END LATENCY MEASUREMENTS 

End-to-end latencies were measured using the swing-arm 
apparatus described in Section 3.1 for a VAE system consisting 
of a Dell Workstation PWS340 (Pentium 4, 2.2 GHz, 512 MB 
RAM, Windows 2000 SP2), a Creative Audigy sound card 
(driver e10kx2k.sys v5.12.01.0129-1.00.0010), and a Polhemus 
Fastrak head-tracker (update rate = 120 Hz). SLAB v5.0.1 was 
used to convolve an internally generated input signal with a 
128-pt. HRIR in a single sound source anechoic simulation. 

End-to-end latencies were measured for the three system 
modes described in section 3.9 (host mode, client/server mode, 
and pseudo client/server mode). For each mode, 25 latency 
measurements were taken for different combinations of the 
SLAB API parameters: output buffer size (4096 and 8192 
bytes) and write buffer size (128, 512, 1024 and 2048 bytes; see 
section 3.7). Measurements were also made for output buffers 
of 1024 and 2048 bytes. However, it was observed that these 
smaller buffer sizes resulted in significant buffer underflows 
and audible artifacts. Thus, data are only reported for the larger 
output buffers that would be usable in practice. 

Since the measured latencies for the three system modes 
were within 0.8ms of one another, only the host-mode data is 
displayed in Figure 2. To aid in the interpretation of the results, 
the values in Figure 2 are plotted as a function of Estimated 
Buffer Latency (EBL). As described in section 3.7, EBL 
represents the mean latency due to the output buffer size (OBS) 
and the write buffer size (WBS): 

 
EBL = (OBS (bytes) - WBS (bytes) / 2) / 
   (44.1 samples/ms * 2 (bytes/sample)/ch * 2 ch) 
 = (OBS (bytes) - WBS (bytes) / 2) / 176.4 bytes/ms 
 

The cluster of points on the left side of Figure 2 refers to an 
OBS of 4096 while the cluster on the right refers to an OBS of 
8192. For data points within these clusters, the WBS values 
from left-to-right are: 2048, 1024, 512 and 128. 

In general, the data show that the predicted and empirical 
values match within less than 1 ms. Further, end-to-end 

latencies are about the same no matter which system mode is 
used, as long as a dedicated network is available for 
client/server mode. For a given tracker update rate, the pattern 
of the data also indicates that the OBS largely impacts the mean 
latency, while the WBS affects the latency jitter (i.e., the range 
of possible latency values). Larger WBS values produce more 
jitter but a smaller mean latency. Thus, there is a trade-off 
between jitter and latency for decreasing values of the WBS. It 
should be remembered that the tracker update rate has a 
significant impact on both mean latency and jitter. For example, 
if the tracker update rate is reduced, mean latency would 
increase by a fixed amount (i.e., all data points would shift 
upward) and the overall latency jitter would also increase. 

Figure 2.  Predicted and measured end-to-end latency. 
Circles: predicted minimum and maximum latency (tmin, 
tmax). Points: predicted average latency (tavg). 
Diamonds: mean measured latency. Error bars: ±2 
standard deviations for the empirical data. Linear best 
fits for the mean predicted (dashed line) and empirical 
latencies (solid line) are indicated. 

Thus, in order to minimize both latency and jitter, the data 
suggest that a user should choose the fastest tracker update rate 
possible and the smallest OBS and WBS values that avoid 
buffer underflow. 

5. CONCLUSIONS 

This paper describes a set of tools for performing high-precision 
latency measurement. Using these tools, formulas were derived 
to characterize and predict the end-to-end latency of SLAB, a 
real-time VAE rendering system.  The accuracy of the formulae 
was verified by comparison to empirical data. Future work will 
include analyzing the effects of system load, parameter 
smoothing, and alternate buffer management techniques on 
latency and latency jitter. 
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